

AIR TRANSPORTATION IS CRITICAL TO THE U.S. ECONOMY.

Why is aviation so important?

The air transportation system is critical to U.S. economic vitality.

\$1.3 TRILLION TOTAL U.S. ECONOMIC ACTIVITY

(Civil and general aviation, 2009)

\$47.2 BILLION
POSITIVE TRADE BALANCE

10.2 IVILLION DIRECT AND INDIRECT JOBS

DINDIRECT JOBS (Civil and general aviation, 2009)

5.2 PERCENT OF TOTAL U.S. GROSS DOMESTIC PRODUCT

(Civil and general aviation, 2009)

Why should I care?

Aviation drives many different parts of the economy.

(Exports, domestic, indirect spending, 2008)

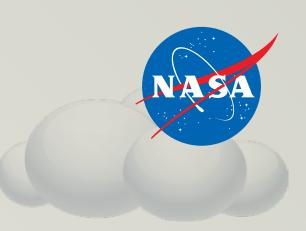
\$636 BILLION SPENT BY AIR TRAVELERS IN U.S. ECONOMY

(Foreign and domestic travelers, 2008)

734 VILLION AT PASSENGERS ON U.S. CARRIERS

(Domestic and international, 2012)

YOU **MAY NOT HAVE**


FLOWN TODAY,

DID.

What are the challenges?

Innovation improves efficiency, but challenges remain.

28% RISE IN COST FROM 2010 TO 2011

JET FUEL

16.4 BILLION GALLONS BURNED IN 2011

(U.S. airlines, +3% in 2012)

\$9.3 BILLION SPENT ON

NOISE ABATENT

BY AIRPORTS SINCE 1982

Where do we see NASA's benefits today?

NASA's fundamental research can be traced to ongoing innovation.

NASA'S WORK ON THESE TECHNOLOGIES

- Advanced composite structures
- Chevrons
- Laminar flow aerodynamics
- Advanced computational fluid dynamics (CFD) and numeric simulation tools

- Advanced composite structures
- Chevrons
- Laminar flow aerodynamics
- Advanced computational fluid dynamics (CFD) and numeric simulation tools
- Advanced ice protection system

WAS TRANSFERRED FOR USE HERE

Boeing **747-8**

AIRCRAFT

787

TODAY'S BENEFITS

more fuel-efficient/reduced CO₂ emissions

30%
lower NO_x emissions

noise reduction compared to 747-400

20%

more fuel-efficient/reduced CO, emissions

smaller noise footprint

Where do we see NASA's benefits today?

NASA's fundamental research can be traced to ongoing innovation.

NASA'S WORK ON THESE TECHNOLOGIES

- Compression system aerodynamic performance advances
- Low-NO_x TAPS II combustor
- Low-pressure turbine blade materials
- High-pressure turbine shroud material
- Nickel-aluminide bond coat for the high-pressure turbine thermal barrier coating

- Low-NO_x Talon combustor
- Fan aerodynamic and acoustic measurements
- Low-noise, high-efficiency fan design
- Ultra-high-bypass technology
- Acoustics modeling and simulation tools

WAS TRANSFERRED FOR USE HERE

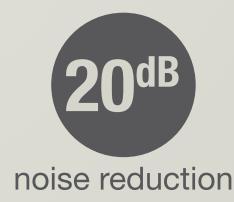
CFM **LEAP-1B**

JET C ENGINES

Pratt & Whitney
PUREPOWER 1000G
GEARED TURBOFAN

TODAY'S BENEFITS

reduction in fuel burn/reduced CO, emissions



15^{dB} noise reduction

16%

reduction in fuel burn/reduced CO, emissions

Where do we see NASA's benefits today?

NASA's fundamental research can be traced to ongoing innovation.

EFFICIENT DESCENT ADVISOR

SYNTHETIC/ENHANCED VISION SYSTEMS

DATA-MINING ALGORITHMS

WERE TRANSFERRED FOR USE HERE

FEDERAL AVIATION ADMINISTRATION (FAA)

Phased deployment by the FAA will start by 2014; full deployment will be in place by 2020.

AVIONICS MANUFACTURERS

(Honeywell, Rockwell Collins, GE Aviation)

There are more than 1,000 enhanced vision systems and more than 3,000 synthetic vision systems flying today.

FEDERAL AVIATION ADMINISTRATION AND AIRLINES

The FAA's Aviation Safety
Information and Analysis Sharing
system uses NASA algorithms,
in common with airline partners like
Southwest Airlines.

TODAY'S BENEFITS

- Fuel-efficient continuous descents
- Potential \$300 million jet fuel savings per year (savings vary per spot fuel costs)
- Reduced delays in congested airspace
- Reduced noise and emissions around airports
- Retained safety
- Reduced controller workload through increased automation

- Improved ability to "see" in poor conditions
- Improved ground hazard avoidance
- Useful for civilian, military, and robotic flight
- Reduced landing ceiling and threshold minimums
- Safe, intuitive training environment for newer pilots

- Improved discovery by individual airlines of relevant operational events
- Increased identification of safetyrelated incidents
- Increased sharing of safetyrelated trends across airlines
- Reduced rate of incidents systemwide

Did you know that NASA is with you when you fly?

TRAFFIC CONTROL TOWNER

HAS NASA-SUPPORTED TECHNOLOGY ON BOARD.